

CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space

Yupeng Hou[†] houyupeng@ruc.edu.cn Gaoling School of Artificial Intelligence, Renmin University of China

> Zhiqiang Zhang lingyao.zzq@antfin.com Ant Group

Binbin Hu bin.hbb@antfin.com Ant Group

Wayne Xin Zhao[⊠] batmanfly@gmail.com Gaoling School of Artificial Intelligence, Renmin University of China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing Academy of Artificial Intelligence

SIGIR 2022

Reported by liang li

Motivation

Motivation:

• session embedding learned by a non-linear encoder is usually not in the same representation space as item embeddings, resulting in the inconsistent prediction issue while recommending items.

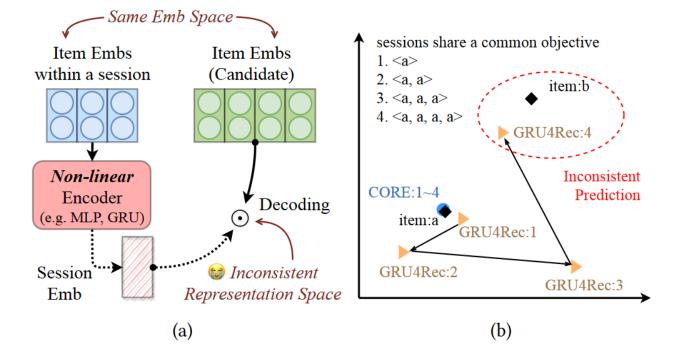
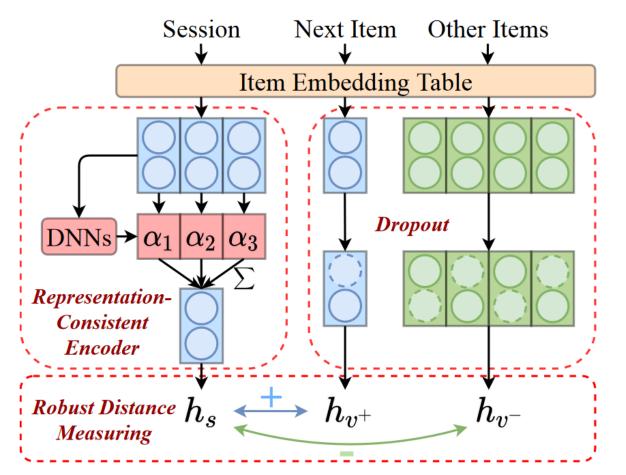



Figure 1: (a) Encoder-decoder framework of most existing session-based recommendation models and (b) Inconsistent prediction issue while measuring the distance between embeddings for recommending.

Problem Statement

Figure 2: Overall framework of CORE.

 $h_i = \text{Emb}(v_i) \in \mathbb{R}^d$ denotes the item embedding for item v_i , where $\text{Emb}(\cdot)$ is the item embedding look-up table and d is the dimension of vectors. Then we have $h_s = \text{Encoder}([h_{s,1}, \ldots, h_{s,n}]) \in \mathbb{R}^d$ to encode a session s with n items, where $\text{Encoder}(\cdot)$ is usually a non-linear neural network. Finally, we can predict the probability distribution for the next item, *i.e.*, $\hat{y} = \text{Decoder}(h_s) \in \mathbb{R}^m$, where m is the number of all items.

Method

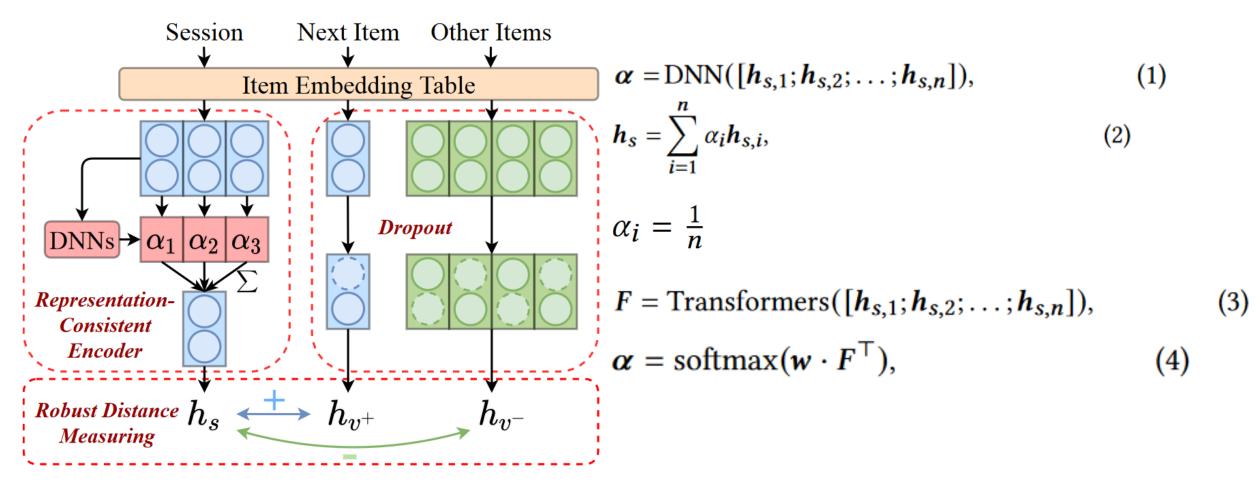


Figure 2: Overall framework of CORE.

Method

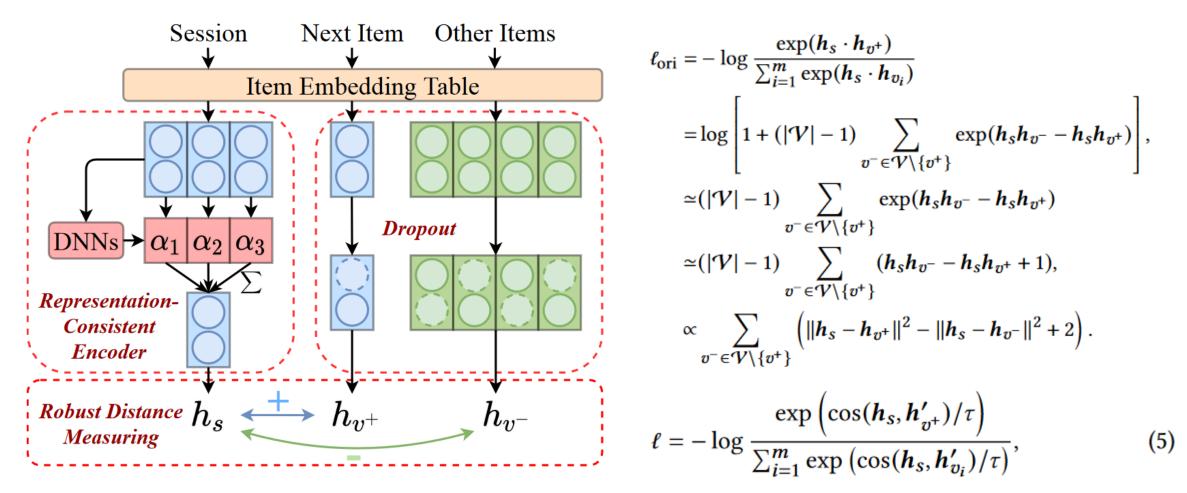


Figure 2: Overall framework of CORE.

Table 1: Overall performance comparison on five datasets. "*" indicates the statistical significance for p < 0.01 compared to the best baseline method with paired *t*-test. Sessions are split into train/validation/test set in a ratio of 8:1:1 for fair evaluation. We indicate performances of FPMC on Yoochoose as "-" due to the OOM issue.

Dataset	Metric	FPMC	GRU4Rec	NARM	SR-GNN	NISER+	LESSR	SGNN-HN	SASRec	GC-SAN	CL4Rec	CORE-ave	CORE-trm	Improv.
Diginetica	R@20 M@20	31.83 8.79	45.43 14.77	47.68 15.58	48.76 16.93	$\frac{51.23}{18.32}$	48.80 16.96	50.89 17.25	49.86 17.19	50.95 17.84	50.03 17.26	50.21 18.07	52.89* 18.58*	+3.24% +1.42%
Nowplaying	R@20 M@20	10.18 4.51	13.80 5.83	14.17 6.11	15.28 6.10	16.55 7.14	17.60 7.13	16.75 6.13	<u>20.69</u> 8.14	18.30 <u>8.13</u>	20.59 8.21	20.31 6.62	21.81* 7.35	+5.41%
RetailRocket	R@20 M@20	46.04 21.95	55.32 33.18	58.65 34.69	58.71 36.42	<u>60.36</u> 37.43	56.22 37.11	58.82 35.72	59.81 36.03	60.18 36.85	59.69 35.95	59.18 <u>37.52</u> *	61.85* 38.76*	+2.47% +3.55%
Tmall	R@20 M@20	20.30 13.07	23.25 15.78	31.67 21.83	33.65 25.27	35.97 27.06	32.45 23.96	39.14 23.46	35.82 25.10	35.32 23.48	35.59 25.07	44.67* 31.85*	$\frac{44.48}{31.72}^{*}$	+14.13% +17.70%
Yoochoose	R@20 M@20	-	60.78 27.27	61.67 27.82	61.84 28.15	62.99 <u>28.98</u>	62.89 28.59	62.49 28.24	63.55 28.63	63.24 29.00	<u>63.61</u> 28.73	58.83 25.05	64.61* 28.24	+1.57%

Table 2: Statistics	of the datasets.
---------------------	------------------

Dataset	# Interactions	# Items	# Sessions	Avg. Length
Diginetica	786,582	42,862	204,532	4.12
Nowplaying	1,085,410	59,593	145,612	9.21
RetailRocket	871,637	51,428	321,032	6.40
Tmall	427,797	37,367	66,909	10.62
Yoochoose	1,434,349	19,690	470,477	4.64

Experiments

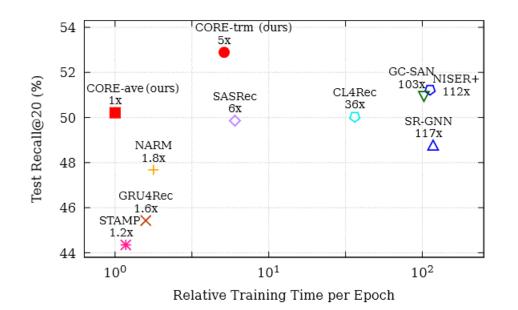
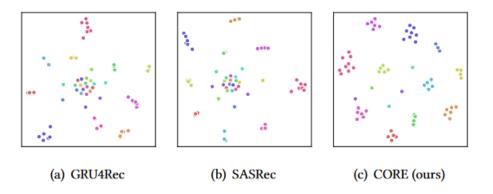
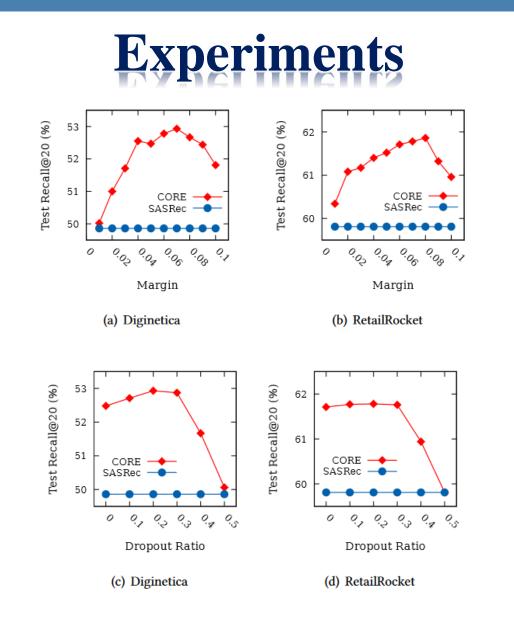


Figure 3: Performances over training time relative to that of CORE-ave on Diginetica.

Table 3: Ablation study of CORE's variants on Diginetica and RetailRocket.


Method	Digi	netica	RetailRocket			
Method	R@20	M@20	R@20	M@20		
CORE	52.89	18.58	61.85	38.76		
w/o RCE	49.82	17.41	59.59	36.27		
w/o RDM	52.31	18.38	60.93	37.72		
SASRec	49.86	17.19	59.81	36.03		

Experiments


Table 4: Performance comparison of different methods and their improved variants on two datasets.

Method	Digi	netica	RetailRocket			
Method	R@20	M@20	R@20	M@20		
NARM	47.68	15.58	58.65	34.69		
+ RCE	51.86	18.27	60.77	37.01		
+ RDM	51.62	17.79	61.33	37.11		
+ All	52.51	18.58	62.19	38.84		
SR-GNN	48.76	16.93	58.71	36.42		
+ RCE	49.51	17.53	57.05	35.70		
+ RDM	51.36	18.57	61.41	38.27		
+ All	52.38	18.95	61.43	38.38		

Figure 4: Visualization of learned session embeddings.

Figure 5: Parameter tuning of CORE on Diginetica and RetailRocket datasets.

Thanks